Lớp 11Toán

Bài 40 trang 122 sgk Đại Số và Giải Tích 11 nâng cao

Luyện tập (trang 121)

Bài 40 (trang 122 sgk Đại Số và Giải Tích 11 nâng cao): 

Cho cấp số cộng (un ) với công sai khác 0. Biết rằng các số u1u2, u2u3 và u3u1 theo thứ tự đó lập thành một cấp số nhân với công bội q ≠ 0. Hãy tìm q.

Lời giải:

Bạn đang xem: Bài 40 trang 122 sgk Đại Số và Giải Tích 11 nâng cao

Vì cấp số cộng (un ) có công sai khác 0 nên các số u1, u2, u3 đôi một khác nhau

⇒ u1.u2 ≠ 0 và q ≠ 1

Ta có u2u3 = u1u2.q và u3u1 = u1u2.q2

Từ đó suy ra : u3 = u1.q = u2.q2 (Vì u1.u2 ≠ 0 ). Do đó u1 = u2.q (vì q ≠ 0 theo giả thiết)

Vì u1, u2, u3 là một cấp số cộng nên u1 + u3 = 2u2 , suy ra:

u2(q + q2) = 2u2 ⇔ q2 + q – 2 = 0 (vì u2 ≠ 0) ⇔ q = -2(vì q ≠ 1)

Tham khảo toàn bộ: Giải Toán 11 nâng cao

Đăng bởi: THPT Văn Hiến

Chuyên mục: Lớp 11, Toán 11

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button