Lớp 11Toán

Bài 6 trang 107 SGK Đại số 11

Ôn tập chương 3

Bài 6 trang 107 SGK Đại số 11

Cho dãy số (un) biết u1 = 2, un+ 1 = 2un – 1 (với n ≥ 1)

Bạn đang xem: Bài 6 trang 107 SGK Đại số 11

a. Viết năm số hạng đầu của dãy.

Bài viết gần đây

b. Chứng minh un = 2n-1 + 1 bằng phương pháp quy nạp.

Lời giải

Hướng dẫn

a) Thay lần lượt n=1,2,3,4,5 để tìm 5 số hạng đầu tiên của dãy số.

b) Sử dụng phương pháp quy nạp toán học.

a. 5 số hạng đầu dãy là:

u1 = 2;

u2 = 2u1 – 1 = 3;

u3 = 2u2 – 1 = 5;

u4 = 2u3 – 1 = 9;

u5 = 2u4 – 1 = 17

b. Chứng minh un = 2n – 1+ 1 (1)

+ Với n = 1 ⇒ u1 = 21 – 1 + 1 = 2 (đúng).

+ Giả sử (1) đúng với n = k ≥ 1, tức là uk = 2k-1 + 1 (1)

⇒ uk+1 = 2.un – 1 = 2(2k-1 + 1) – 1 = 2.2k– 1 + 2 – 1 = 2k + 1

⇒ (1) cũng đúng với n = k + 1 .

Vậy un = 2n – 1 + 1 với mọi n ∈ N.

Xem toàn bộ Giải Toán 11: Ôn tập chương 3

Đăng bởi: THPT Văn Hiến

Chuyên mục: Lớp 11, Toán 11

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button