Lớp 11Toán

Bài 8 trang 143 SGK Đại số 11

Ôn tập chương 4

Bài 8 trang 143 SGK Đại số 11

Chứng minh rằng phương trình x5 – 3x4 + 5x – 2 = 0 có ít nhất ba nghiệm nằm trong khoảng (-2; 5)

Lời giải

Bạn đang xem: Bài 8 trang 143 SGK Đại số 11

Hướng dẫn

– Hàm số y = f(x) liên tục trên [a;b] và có f(a).f(b) < 0. Khi đó phương trình f(x) = 0 có ít nhất 1 nghiệm x0 ∈ (a;b).

– Xét hàm số f(x) = x– 3x+ 5x – 2.

– Thay một số giá trị của x trong khoảng (−2;5) vào f(x) và tính giá trị.

– Sử dụng lý thuyết trên đánh giá số nghiệm ít nhất của phương trình trong khoảng (−2;5).

Đặt f(x) = x5 – 3x4 + 5x – 2

f(x) là hàm đa thức nên liên tục trên R.

Ta có: f(0) = –2 < 0

            f(1) = 1 > 0

            f(2) = -8 < 0

            f(3) = 13 > 0

⇒ f(0).f(1) < 0; f(1).f(2) < 0; f(2).f(3) < 0

⇒ Phương trình f(x) = 0 có ít nhất 1 nghiệm thuộc khoảng (0; 1); 1 nghiệm thuộc khoảng (1; 2); 1 nghiệm thuộc khoảng (2; 3)

⇒ f(x) = 0 có ít nhất 3 nghiệm thuộc (0; 3) hay f(x) = 0 có ít nhất 3 nghiệm thuộc (-2; 5).

Xem toàn bộ Giải Toán 11: Ôn tập chương 4

Đăng bởi: THPT Văn Hiến

Chuyên mục: Lớp 11, Toán 11

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button